University of Bialystok - Central Authentication SystemYou are not logged in | log in
course directory - help

Elementary Number Theory

General data

Course ID: 0600-MS1-1ETL#a Erasmus code / ISCED: 11.101 / (0541) Mathematics
Course title: Elementary Number Theory Name in Polish: Elementary Number Theory
Department: Faculty of Mathematics and Informatics
Course groups: (in Polish) 3L stac. I st. studia matematyki specj. matematyka teoretyczna – przedmioty obowiązkowe
ECTS credit allocation (and other scores): 4.00
view allocation of credits
Language: English
Type of course:

obligatory courses

Short description:

Course objectives:

To deliver elements of knowledge which are needed to obtain the ability to express the facts from elementary number theory in terms of groups and rings.

Full description:

Course profile: academic

Form of study: stationary

Course type: obligatory

Academic discipline: Mathematics, field of study in the arts and science: mathematics

Year: 1, semester: 1

Prerequisities: none

lecture 30 h. exercise class 30 h.

Verification methods: lectures, exercises, consultations, studying literature, home works, discussions in groups.

ECTS credits: 4

Balance of student workload:

attending lectures15x2h = 30h

attending exercise classes 7x4h + 2h(preliminary teaching) = 30h

preparation for classes 7x3h = 21h

completing notes after exercises and lectures 7x2h = 14h

consultations 5x1h = 5h

the final examination: preparation.and take 12h + 3h = 15h

Quantitative description

Direct interaction with the teacher: 68 h., 2 ECTS

Practical exercises: 70 h., 2 ECTS


K.H. Rosen, Elementary number theory and its applications,

Third edition, Addison-Wesley Publishing Company, Book

Program, Reading, MA, 1993.

Learning outcomes:

Learning outcomes:

A student is prepared to express the facts from elementary number theory in terms of groups and rings. K_W04, K_W05, K_W06, K_W02, K_U01, K_U02, K_U06

A student is able to find the canonical decomposition of a positive integer, of an integer and of a rational number; a student is able to find the greatest common divisor and the least common multiple of integers; a student is able to solve linear Diophantine equations; a student is able to find solutions of congruences; a student can apply modular arithmetic; a student can apply the Legendre symbol; a student is able to express a real number as a continued fraction; a student is able to find the values of basic arithmetic functions.K_U03, K_U08, K_W02, K_U01, K_U02, K_U06

Assessment methods and assessment criteria:

The overall form of credit for the course: final exam

Classes in period "Academic year 2018/2019" (in progress)

Time span: 2018-10-01 - 2019-06-30
Choosen plan division:

see course schedule
Type of class: Class, 30 hours more information
Lecture, 30 hours more information
Coordinators: Jarosław Kotowicz
Group instructors: (unknown)
Students list: (inaccessible to you)
Examination: Examination
Course descriptions are protected by copyright.
Copyright by University of Bialystok.