Uniwersytet w Białymstoku - Centralny System UwierzytelnianiaNie jesteś zalogowany | zaloguj się
katalog przedmiotów - pomoc

Analiza matematyczna II 360-FS1-1AM2
Wykład (WYK) Rok akademicki 2020/21

Informacje o zajęciach (wspólne dla wszystkich grup)

Liczba godzin: 45
Limit miejsc: (brak limitu)
Efekty uczenia się:

Zna podstawowe pojęcia oraz metody nowoczesnego rachunku różniczkowego i całkowego funkcji jednej zmiennej rzeczywistej oraz teorii ciągów i szeregów funkcyjnych, ze szczególnym uwzględnieniem szeregów potęgowych i szeregów trygonometrycznych i dowiaduje się jak te działy analizy matematycznej są wykorzystywane w geometrii i fizyce. - egzamin pisemny/ustny; serie kartkówek; kolokwium/kolokwia; domowe prace rachunkowe/problemowe; prezentacje rozwiązań zadań na zajęciach; obserwacja ciągła aktywności studenta;

Posługuje się rachunkiem zdań i kwantyfikatorów. - serie kartkówek; kolokwium/kolokwia; obserwacja ciągła aktywności studenta;

Posługuje się definicją całki funkcji jednej zmiennej rzeczywistej oraz potrafi wyjaśnić analityczny i geometryczny sens tego pojęcia. - egzamin pisemny/ustny; domowe prace rachunkowe/problemowe; obserwacja ciągła aktywności studenta;

Umie całkować funkcje jednej zmiennej przez części i przez podstawienie oraz potrafi wyrażać pola figur płaskich i powierzchni obrotowych, a także objętości brył obrotowych jako odpowiednie całki. - egzamin pisemny/ustny; serie kartkówek; kolokwium/kolokwia; domowe prace rachunkowe/problemowe; prezentacje rozwiązań zadań na zajęciach; obserwacja ciągła aktywności studenta;

Potrafi definiować funkcje z wykorzystaniem przejść granicznych i opisywać ich własności. - egzamin pisemny/ustny; domowe prace rachunkowe/problemowe; obserwacja ciągła aktywności studenta;

Umie wykorzystywać szeregi funkcyjne do wyliczeń przybliżonych. - egzamin pisemny/ustny; serie kartkówek; kolokwium/kolokwia; domowe prace rachunkowe/problemowe; prezentacje rozwiązań zadań na zajęciach; obserwacja ciągła aktywności studenta;

Umie wykorzystywać twierdzenia i metody rachunku różniczkowego funkcji jednej zmiennej w zagadnieniach związanych z optymalizacją, poszukiwaniem ekstremów lokalnych i globalnych oraz badaniem przebiegu zmienności funkcji. - egzamin pisemny/ustny; serie kartkówek; kolokwium/kolokwia; domowe prace rachunkowe/problemowe; prezentacje rozwiązań zadań na zajęciach; obserwacja ciągła aktywności studenta;

Metody i kryteria oceniania:

Warunkiem przystąpienia do egzaminu jest posiadanie zaliczenia z ćwiczeń. Egzamin jest pisemny. Zaliczenie egzaminu następuje jeśli student uzyska 51% punktów wymaganych z egzaminu, do punktacji wlicza się aktywność studenta na wykładzie. Obecność na zajęciach zgodnie z Regulaminem studiów Uniwersytetu w Białymstoku i wewnętrznymi przepisami Wydziału Matematyki.

Zakres tematów:

Różniczkowanie (pochodna i jej interpretacje; podstawowe własności funkcji różniczkowalnych, pochodna a działania arytmetyczne, różniczkowalność złożenia funkcji; ekstrema lokalne i pochodna; twierdzenie Rolle'a i twierdzenie Lagrange'a; własność Darboux funkcji pochodnej i pochodna funkcji odwrotnej, reguła de l'Hospitala). Pochodne wyższych rzędów (definicja pochodnej rzędu n; ciągłość pochodnych). Twierdzenia Taylora. Monotoniczność, wklęsłość i wypukłość funkcji, warunki konieczne i dostateczne istnienia ekstremów. Całka nieoznaczona (funkcja pierwotna i definicja całki, podstawowe własności całki, całkowanie przez części i przez podstawienie; całkowanie funkcji wymiernych, trygonometrycznych i niewymiernych). Całka Riemanna (definicja i podstawowe własności całki, twierdzenia o istnieniu całki dla różnych klas funkcji, podstawowe twierdzenia rachunku różniczkowo - całkowego; zastosowanie do

wyliczania wielkości geometrycznych i fizycznych). Całki niewłaściwe (definicja i podstawowe własności całek niewłaściwych). Ciągi i szeregi funkcyjne (zbieżność punktowa, zbieżność jednostajna i norma supremum, kryterium Weierstrassa zbieżności szeregów funkcyjnych, zbieżność niemal jednostajna, ciągłość funkcji granicznej, różniczkowalność i całkowalność funkcji granicznych, twierdzenie Weierstrassa). Szeregi potęgowe (wyznaczanie promienia zbieżności, zachowanie się szeregu na końcach przedziału zbieżności, szereg Taylora). Funkcja wykładnicza i logarytm, funkcje trygonometryczne. Szeregi trygonometryczne.

Metody dydaktyczne:

Metody dydaktyczne: wykłady, konsultacje, praca nad literaturą, dyskusje.

Grupy zajęciowe

zobacz na planie zajęć

Grupa Termin(y) Prowadzący Miejsca Akcje
1 każdy wtorek, 8:30 - 11:15, sala e-learning
Alina Dobrogowska 8/ szczegóły
Wszystkie zajęcia odbywają się w budynku:
Budynek Wydziału Matematyki i Instytutu Informatyki - Kampus
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet w Białymstoku.