Spectroscopy 310-ERS-1SPMO
Wykład (WYK)
Rok akademicki 2022/23
Informacje o zajęciach (wspólne dla wszystkich grup)
Liczba godzin: | 35 | ||
Limit miejsc: | (brak limitu) | ||
Literatura: |
Peter W. Atkins – Physical Chemistry, eighth Edition, New York, 2006, Chapters 10-15, page 320-560. Peter W. Atkins, Julio De Paula, Physical Chemistry for the Life Sciences, New York, 2011 , part 4 Biochemical spectroscopy, page 461-545. |
||
Efekty uczenia się: |
1. Understand quantum chemical principles. 2. Student will know the basic physical chemistry law that govern molecular spectroscopy. 3. Student will know basic information on molecular methods (IR, Raman, UV-VIS, NMR, EPR). 4. Student will be able to select molecular spectroscopy methods suitable for solving given scientific problem. 5. Student will be able to analyze results of measurements using molecular spectroscopy methods. 6. Student shows interest in the phenomenon of the interaction of light with matter in terms of the relationship with the molecular structure. |
||
Metody i kryteria oceniania: |
Lecture: activation method, Lab: – spectral measurements: IR, NMR i UV-VIS, AAS ; Lab: Students have to prepare for the Lab by reading the corresponding chapters of Peter J. Larkin, IR and Raman Spectroscopy, Principles and Spectral Interpretation, Elsevier, 2011. Infrared Spectroscopy Fundamentals and Applications - Barbar Stuart The preparation will be checked by instructor. A final writing exam will be conducted after the finals week: Final mark= 70% of exam + 30% of the practical |
||
Zakres tematów: |
1-2. The basis of absorption and emission of radiation by molecular species, the wave properties of the light, the quantum theory of light, quantum theory of matter, molecular energies and the Born-Oppenheimer approximation, the types of molecular motion and spectroscopy associated with each 3-4. Rotational spectroscopy – classical description of molecular rotation, quantum mechanics of molecular motion, rotational spectra, determination of the bond length from rotational constants, vibrational stretching and vibrational satellites, no-rigid rotor, centrifugal distortion, degeneracies and intensities, Stark effect, selection rules, rotational spectra of polyatomic molecules 5-6. Vibrational spectroscopy – classical description of molecular vibrations, the classical harmonic oscillator, quantum mechanics of molecular vibration, vibrational selection rules, anharmonic vibrations and Morse oscillator, bond dissociation energies and Birge-Sponer plots, calculation of force constants from vibrational spectrum, isotopic shift, rotational structure in vibrational spectra of diatomic molecules, vibrational selection rules, vibration of polyatomic molecules, normal modes, characteristic group vibrational energies, hydrogen bonds in IR spectra 7-8. Raman Spectroscopy – description of Raman scattering, Rayleigh scattering, Stokes and anti-Stokes scattering , polarizabilityof the molecules, Placzek theory, selction rules for rotational Raman spectra of diatomic molecules, rotational Raman spectra, vibrational Raman spectra, Raman spectra of polyatomic molecules 9-10. Electronic Spectroscopy – electronic transition, energy of electronic transition, selection rules, the Franck-Condon principle, term symbols for describing atomic and molecular states, Russel-Saunders spin-orbit coupling, selection rules of electronic transition, absorption intensity, probability of light absorption, an electronic spectrum, classification of electronic transition, d-d and CT transitions 11. Emission Spectroscopy – fluorescence and phosphorescence , deactivation processes – internal conversion, de-excitation process, non-radiative and radiative transitions, characteristic of fluorescence emission, Stokes shift, fluorophores, quantum yield of a fluorescent process, phosphorescence, intersystem crossing, Jablonski diagram, Kasha's rule of the quantum yield of luminescence 12. Photoelectron spectroscopy – the photoelectric effect, UV photoelectron spectroscopy UPES, X-ray photoelectron spectroscopy XPES, electron binding energy, ESCA, Auger electron spectroscopy 13-14. Spectra in magnetic field – NMR – the Stern-Gerlach’s experiment, nuclear spin angular momentum, the magnetic moment of a nucleus, the nuclei in a magnetic field, the Larmor frequency, the chemical shift, electronic shielding of nuclei, the chemical shift scale, the spin-spin coupling, the spin-spin coupling constant, spin-spin splitting, molecular structure from NMR spectra |
||
Metody dydaktyczne: |
Lecture: activation method, |
Grupy zajęciowe
Grupa | Termin(y) | Prowadzący |
Miejsca ![]() |
Akcje |
---|---|---|---|---|
1 |
(brak danych),
(sala nieznana)
|
Alina Dubis | 0/ |
szczegóły![]() |
Wszystkie zajęcia odbywają się w budynku: |
Właścicielem praw autorskich jest Uniwersytet w Białymstoku.