Uniwersytet w Białymstoku - Centralny System Uwierzytelniania
Strona główna

Algebra z geometrią 390-FM1-1AZG
Laboratorium (LAB) Rok akademicki 2022/23

Informacje o zajęciach (wspólne dla wszystkich grup)

Liczba godzin: 15
Limit miejsc: (brak limitu)
Zaliczenie: Zaliczenie na ocenę
Literatura:

1) Paweł Urbański, ALGEBRA dla studentów fizyki, skrypt Katedra MMF, Uniwersytet Warszawski, Warszawa 1997

2) Bolesław Gleichgewicht, Algebra, PWN 1975,

3) Maria Moszyńska, Joanna Święcicka, Geometria z algebrą liniową, PWN 1987

4) A. Białynicki - Birula, Algebra liniowa z geometrią, PWN 1988

5) A.Mostowski, M.Stark, Algebra liniowa, PWN 1988

6) https://www.wolfram.com/language/fast-introduction-for-math-students/en/ (przewodnik po programie mathematica)

Efekty uczenia się:

Student przy pomocy programu komputerowego do obliczeń:

1. Poznaje podstawowy aparat matematyczny liczb zespolonych i algebry liniowej, niezbędny do dalszego studiowania fizyki.

2. Zdobywa sprawność rachunkową i umiejętność stosowania wektorów i macierzy do stawiania oraz rozwiązywania problemów fizyki i

dyscyplin pokrewnych.

3. Posługuje się językiem matematycznym do opisu rzeczywistości fizycznej.

4. Posiada sprawność rachunkową w zakresie rachunku liczb zespolonych, wektorów i macierzy.

5. Orientuje się w zagadnieniach algebry wyższej mających znaczenie dla dalszego studiowania fizyki.

Metody i kryteria oceniania:

Ocena z laboratorium wystawiana jest na podstawie wyników dwóch kolokwiów (średnia arytmetyczna procentowych wyników) i aktywności(maksymalnie 10% doliczane do wyniku z kolokwium) :

0% - 50% - ocena niedostateczna

51% - 60% - ocena dostateczna

61% - 70% - ocena dostateczna plus

71% - 80% - ocena dobra

81% - 90% - ocena dobra plus

91% - 100% - ocena bardzo dobra

Zakres tematów:

1) przestrzenie wektorowe, teoria i podstawowe przykłady

2) baza i wymiar przestrzeni,

3) przestrzenie macierzy i działania na macierzach,typy macierzy,

4) odwzorowania liniowe i macierze odwzorowań. transformacje przejścia,

5) kryterium odwracalności - wyznacznik

6) układy równań liniowych - układy Cramera,

7) przestrzenie Euklidesowe i ich własności, ortogonalizacja Grama - Schmidta,

8) przestrzenie unitarne, twierdzenia o iloczynie skalarnym i normie, nierówność Schwartza, ortogonalizacja i twierdzenie o rozkładzie ortogonalnym,

9) ortogonalizacja G-S w zastosowaniu do wielomianów,

10) odwzorowania samosprzężone, wartości własne, podprzestrzenie własne,

11) rozkład spektralny odwzorowań samosprzężonych i normalnych,

12) przestrzenie psedoortogonalne,

13) przestrzenie afiniczne

Metody dydaktyczne:

instruktarz, rozwiązywanie zadań przy pomocy komputera, wizualizacja wyników, studenci stymulowani są do dyskusji wyników,

Grupy zajęciowe

zobacz na planie zajęć

Grupa Termin(y) Prowadzący Miejsca Liczba osób w grupie / limit miejsc Akcje
1 każdy poniedziałek, 17:00 - 17:45, (sala nieznana)
0/ szczegóły
Wszystkie zajęcia odbywają się w budynku:
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet w Białymstoku.
ul. Świerkowa 20B, 15-328 Białystok tel: +48 85 745 00 00 (Centrala) https://uwb.edu.pl kontakt deklaracja dostępności USOSweb 6.8.0.0-2 (2022-08-11)