Elements of Cryptography and Coding Theory
Informacje ogólne
Kod przedmiotu: | 360-MS1-2KTKa | Kod Erasmus / ISCED: |
11.104
![]() ![]() |
Nazwa przedmiotu: | Elements of Cryptography and Coding Theory | ||
Jednostka: | Wydział Matematyki | ||
Grupy: | |||
Punkty ECTS i inne: |
4.00 ![]() ![]() |
||
Język prowadzenia: | angielski | ||
Rodzaj przedmiotu: | obowiązkowe |
||
Skrócony opis: |
(tylko po angielsku) Course objectives: Introduction to classical and modern cryptography. |
||
Pełny opis: |
(tylko po angielsku) Course profile: academic Form of study: stationary Course type: obligatory Academic discipline: Mathematics, field of study in the arts and science: mathematics Year: 2, semester: 3 Prerequisities: Algebra I, Elementary Number Theory, Linear Algebra II lecture 15 h. exercise class 30 h. Verification methods: lectures, exercises, consultations, studying literature, home works, discussions in groups. ECTS credits: 4 Balance of student workload: attending lectures15x1h = 15h attending exercise classes 7x4h + 2h(preliminary teaching) = 30h preparation for classes 7x3h = 21h completing notes after exercises and lectures 7x3h = 21h consultations 5x1h = 5h small projects: preparation and defense 40h = 40h final work: preparation and take 10h + 2h = 12h Quantitative description Direct interaction with the teacher: 53 h., 2 ECTS Practical exercises: 117 h., 4 ECTS |
||
Literatura: |
(tylko po angielsku) Rosen, Kenneth H., Elementary number theory and its applications. Third edition. Addison-Wesley Publishing Company, Advanced Book Program, |
||
Efekty uczenia się: |
(tylko po angielsku) Learning outcomes: Knowledge of elements of finite field algebra, linear algebra and number theory, which are needed to describe error-correcting codes and cryptosystems, among other things, knowledge of base-b representation (especially binary and hexadecimal expansions), ability of conversion between two different base-b representations, ability of the use of the extended Euclidean algorithm, ability of the use of modular exponentiation, ability to find inverses of the ring Z/mZ, ability to solve systems of linear congruences.K_W04, K_W05, K_W06, K_U01, K_U02, K_U03 Knowledge of chosen cryptosystems (symmetric ones and asymmetric ones): ability to encript and decript messages.K_U29, K_U25, K_U17, K_U11 Knowledge of basic definitions and properties of block codes. K_U29, K_U25, K_U17, K_U06 Knowledge of notions: linear codes, encoding and decoding information..K_U29, K_U25, K_U17, K_U16 |
||
Metody i kryteria oceniania: |
(tylko po angielsku) The overall form of credit for the course: test |
Zajęcia w cyklu "Rok akademicki 2022/23" (jeszcze nie rozpoczęty)
Okres: | 2022-10-01 - 2023-06-30 |
![]() |
Typ zajęć: |
Ćwiczenia, 30 godzin ![]() Wykład, 15 godzin ![]() |
|
Koordynatorzy: | Tomasz Czyżycki, Izabela Malinowska, Aneta Sliżewska | |
Prowadzący grup: | (brak danych) | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: | Zaliczenie na ocenę |
Właścicielem praw autorskich jest Uniwersytet w Białymstoku.