Numerical Methods
Informacje ogólne
Kod przedmiotu: | 360-MS1-2MNUa | Kod Erasmus / ISCED: |
11.105
![]() ![]() |
Nazwa przedmiotu: | Numerical Methods | ||
Jednostka: | Wydział Matematyki | ||
Grupy: | |||
Punkty ECTS i inne: |
4.00 ![]() ![]() |
||
Język prowadzenia: | angielski | ||
Rodzaj przedmiotu: | obowiązkowe |
||
Skrócony opis: |
(tylko po angielsku) Course objectives: Introduction to selected methods of numerical analysis and numerical linear algebra. Practical applications. |
||
Pełny opis: |
(tylko po angielsku) Course profile: academic Form of study: stationary Course type: obligatory Academic discipline: Mathematics, field of study in the arts and science: mathematics Year: 2, semester: 3 Prerequisities: none lecture 30 h. laboratory class 30 h. Verification methods: lectures, consultations, projects, presentations, studying literature, home works, discussions in groups. ECTS credits: 6 Balance of student workload: attending lectures15x2h = 30h attending laboratories 7x4h + 2h(instruktażu) = 30h preparation for classes 7x3h = 21h completing notes after exercises and lectures 7x2h = 14h consultations 5x1h = 5h preparing medium size projects 40h = 40h final exam: preparation and take 12h + 3h = 15h Quantitative description Direct interaction with the teacher: 68 h., 2 ECTS Practical exercises: 110 h., 4 ECTS |
||
Literatura: |
(tylko po angielsku) J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, ISBN 0-387- 90420-4 L.N. Trefethen and D. Bau, Numerical Linear Algebra, Society of Industrial and Applied Mathematics C.T. Kelley, Iterative methods for linear and nonlinear equations, Society of Industrial and Applied Mathematics |
||
Efekty uczenia się: |
(tylko po angielsku) Learning outcomes: Student knows the selected methods of solving systems of linear and nonlinear equations.K_W08, K_W10, K_K01 Student can compute the determinant and the inverse matrix.K_W04, K_W08, K_W10, K_K01 Student knows some methods of computing of the eigenvalues and eigenvectors of a matrix.K_W04, K_W07, K_W08, K_W10, K_K01 Student is able to describe the problem of the approximation and knows some methods of the approximation.K_W08, K_W10, K_U19, K_K01 Student knows some methods of the integral calculus. She/He is able to compute the quadrature for the finite and infinite interval.K_W08, K_W10, K_U05, K_U19, K_K01 Student can solve numerically the ordinary differential equations and some very simple partial differential equations.K_W04, K_W07, K_W08,K_U05, K_U06, K_U16, K_U19, K_K01 Student is able to solve the problems using an application program for mathematics.K_W12, K_K01, K_U20, K_K08 |
||
Metody i kryteria oceniania: |
(tylko po angielsku) The overall form of credit for the course: final exam |
Zajęcia w cyklu "Rok akademicki 2022/23" (jeszcze nie rozpoczęty)
Okres: | 2022-10-01 - 2023-06-30 |
![]() |
Typ zajęć: |
Laboratorium, 30 godzin ![]() Wykład, 15 godzin ![]() |
|
Koordynatorzy: | Tomasz Czyżycki, Aneta Sliżewska, Marzena Szajewska | |
Prowadzący grup: | (brak danych) | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: | Zaliczenie na ocenę |
Właścicielem praw autorskich jest Uniwersytet w Białymstoku.