Analiza matematyczna II
Informacje ogólne
Kod przedmiotu: | 0600-ES1-1AM2 |
Kod Erasmus / ISCED: |
11.101
|
Nazwa przedmiotu: | Analiza matematyczna II |
Jednostka: | Instytut Matematyki. |
Grupy: | |
Punkty ECTS i inne: |
(brak)
|
Język prowadzenia: | polski |
Rodzaj przedmiotu: | obowiązkowe |
Wymagania (lista przedmiotów): | Analiza matematyczna I 0600-ES1-1AM1 |
Skrócony opis: |
Założenia i cele przedmiotu: Zapoznanie z podstawowymi pojęciami analizy matematycznej. Umiejętność formułowania poznanych definicji i twierdzeń oraz rozwiązywania prostych zadań rachunkowych w zakresie poznanych treści kształcenia |
Pełny opis: |
Profil kształcenia: ogólnoakademicki Forma studiów: stacjonarne Przedmiot obowiązkowy Dziedzina: nauki matematyczne, dyscyplina: informatyka Rok studiów: 1, semestr: 2 Prerekwizyty: Analiza matematyczna I wykład 30 godz. ćwiczenia 30 godz. Metody dydaktyczne: wykłady, ćwiczenia rachunkowe, konsultacje, praca nad literaturą, rozwiązywanie zadań domowych. Punkty ECTS: 5 Bilans nakładu pracy studenta: udział w wykładach15x2h = 30h udział w ćwiczeniach 15x2h = 30h przygotowanie do zajęć (ćwiczeń) 30h = 30h udział w konsultacjach 5h = 5h przygotowanie do kolokwiów 25h = 25h przygotowanie do egzaminu i udział w nim 20+2h = 22h zapoznanie z literatura 3h = 3h Wskaźniki ilościowe nakład pracy studenta związany z zajęciami wymagającymi bezpośredniego udziału nauczyciela akademickiego: 67 godzin, 2 ECTS nakład pracy studenta związany z zajęciami o charakterze praktycznym: 85 godzin, 3 ECTS |
Literatura: |
Literatura podstawowa: 1. R. Rudnicki „Wykłady z analizy matematycznej”, PWN, 2006. 2. K. Maurin „Analiza'' t.1, Państwowe Wydawnictwo Naukowe. 1977. 3. L. Schwartz „Kurs analizy matematycznej'', PWN, 1982. 4. G. M. Fichtenholz „Rachunek różniczkowy i całkowy'' t. I i II, Wydawnictwo Naukowe PWN, 1995. Literatura uzupełniająca: 1. M. Gewert, Z. Skoczylas „ Analiza Matematyczna”, część 1, Oficyna Wydawnicza GiS, 2005. 2. W. Leksiński, I. Nabiałek, W. Żakowski „Matematyka. Definicje, twierdzenia, przykłady, zadania”, Wydawnictwo Naukowo-Techniczne, 2003 3. W. Rudin „Podstawy analizy matematycznej”, PWN, 2000. 4. W. Kleiner „Analiza matematyczna”, PWN, 1986. 5. A.M. Kaczyński "Podstawy analizy matematycznej", część I i II, Oficyna Wyd. PW, 2005 |
Efekty uczenia się: |
Efekty kształcenia w ramach realizacji przedmiotu: Zna podstawy rachunku całkowego funkcji jednej zmiennej rzeczywistej. Potrafi podać interpretację geometryczną całki oznaczonej. Oblicza całki na prostym poziomie trudności. K_IE1A_W12, K_IE1A_U19, K_IE1A_K01,K_IE1A_K02 Zna podstawy rachunku różniczkowego funkcji wielu zmiennych. W szczególności potrafi wyznaczać ekstrema lokalne, globalne i warunkowe funkcji na podstawowym poziomie trudności. K_IE1A_W12, K_IE1A_U19, K_IE1A_K01,K_IE1A_K02 Zna podstawy rachunku całkowego funkcji wielu zmiennych.K_IE1A_W12, K_IE1A_U19, K_IE1A_K01,K_IE1A_K02 |
Metody i kryteria oceniania: |
Ogólna forma zaliczenia: egzamin |
Właścicielem praw autorskich jest Uniwersytet w Białymstoku.