Algebra I
Informacje ogólne
Kod przedmiotu: | 360-MS1-2ALG1a |
Kod Erasmus / ISCED: |
11.102
|
Nazwa przedmiotu: | Algebra I |
Jednostka: | Wydział Matematyki |
Grupy: |
Erasmus+ sem. zimowy |
Punkty ECTS i inne: |
4.00
|
Język prowadzenia: | angielski |
Rodzaj przedmiotu: | obowiązkowe |
Założenia (lista przedmiotów): | Algebra liniowa I 0600-FS1-1AL1 |
Założenia (opisowo): | The student has basic knowledge of Linear Algebra, Elementary Number Theory and Introduction to Mathematics. |
Tryb prowadzenia przedmiotu: | w sali |
Skrócony opis: |
Aims and objectives of the course: Developing the ability to recognize the structure of a group, ring, field in known algebraic and geometric objects (transformations, permutations, isometries, subsets of complex numbers, invertable matrices), expressing facts known from elementary number theory in terms of groups and rings. |
Pełny opis: |
Course profile: academic Form of study: stationary Course type: obligatory Academic discipline: Mathematics, field of study in the arts and science: mathematics Year: 2, semester: 3 Prerequisities: Linear Algebra II, Elementary Number Theory lecture 30 h. exercise class 30 h. Verification methods: lectures, exercises, consultations, studying literature, home works, discussions in groups. ECTS credits: 4 Balance of student workload: attending lectures15x2h = 30h attending exercise classes 7x4h + 2h(preliminary teaching) = 30h preparation for classes 7x3h = 21h completing notes after exercises and lectures 7x2h = 14h consultations 5x2h = 10h the final examination: preparation and take 15h + 4h = 19h Quantitative description Direct interaction with the teacher: 74 h., 2 ECTS Practical exercises: 75 h., 3 ECTS |
Literatura: |
1. Paul M. Cohn " Basic Algebra: Groups, Rings and Fields", Springer Science & Business Media 2004. 2. Joseph J. Rotman "A First Course in Abstract Algebra: With Applications" Pearson Prentice Hall 2006. 3. Joseph Gallian "Contemporary Abstract Algebra" Cengage Learning 2016. 4. Gregory T. Lee "Abstract Algebra: An Introductory Course" Springer 2018. 5. I. N. Herstein "Abstract Algebra" Macmillan Pub 1990. 6. David S. Dummit, Richard M. Foote" Abstract Algebra" Wiley. 1999. |
Efekty uczenia się: |
Student can formulate the most important theorems of general algebra, knows the basic theorem of algebra and understands its meaning KA6_WG03. Student knows examples of applications of general algebra methods in various branches of mathematics (for example, Fermat's little theorem in number theory) KA6_UW25. Student is able to use the most important theorems of general algebra to solve standard problems KA6_UW25. Student knows the basic structures and concepts of general algebra and can illustrate them with examples (permutation groups, polynomial rings, GF (p ^ n) fields) KA6_WG04. Student knows that the known algebraic structures exist and are important in various mathematical theories and can point out a specific example of the application of general algebra in reality (e.g. cryptography) KA6_WG02, KA6_WK01, KA6_WK03. Student notices analogies between the properties of various algebraic structures KA6_UW24. |
Metody i kryteria oceniania: |
The overall form of credit for the course: final exam |
Zajęcia w cyklu "Rok akademicki 2022/23" (w trakcie)
Okres: | 2022-10-01 - 2023-06-30 |
![]() |
Typ zajęć: |
Ćwiczenia, 30 godzin
Wykład, 30 godzin
|
|
Koordynatorzy: | Romuald Andruszkiewicz, Tomasz Czyżycki, Aneta Sliżewska, Mateusz Woronowicz | |
Prowadzący grup: | Mateusz Woronowicz | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Egzamin
Ćwiczenia - Zaliczenie na ocenę |
Właścicielem praw autorskich jest Uniwersytet w Białymstoku.