Elements of Cryptography and Coding Theory
Informacje ogólne
Kod przedmiotu: | 360-MS1-2KTKa |
Kod Erasmus / ISCED: |
11.104
|
Nazwa przedmiotu: | Elements of Cryptography and Coding Theory |
Jednostka: | Wydział Matematyki |
Grupy: |
Erasmus+ sem. zimowy |
Punkty ECTS i inne: |
4.00
|
Język prowadzenia: | angielski |
Rodzaj przedmiotu: | obowiązkowe |
Tryb prowadzenia przedmiotu: | w sali |
Skrócony opis: |
Course objectives: Introduction to classical and modern cryptography. |
Pełny opis: |
Course profile: academic Form of study: stationary Course type: obligatory Academic discipline: Mathematics, field of study in the arts and science: mathematics Year: 2, semester: 3 Prerequisities: Algebra I, Elementary Number Theory, Linear Algebra II lecture 15 h. exercise class 30 h. Verification methods: lectures, exercises, consultations, studying literature, home works, discussions in groups. ECTS credits: 4 Balance of student workload: attending lectures15x1h = 15h attending exercise classes 7x4h + 2h(preliminary teaching) = 30h preparation for classes 7x3h = 21h completing notes after exercises and lectures 7x3h = 21h consultations 5x1h = 5h small projects: preparation and defense 40h = 40h final work: preparation and take 10h + 2h = 12h Quantitative description Direct interaction with the teacher: 53 h., 2 ECTS Practical exercises: 117 h., 4 ECTS |
Literatura: |
Rosen, Kenneth H., Elementary number theory and its applications. Third edition. Addison-Wesley Publishing Company, Advanced Book Program, Johannes A. Buchmann, Introduction to Cryptography ,Springer Verlag 2001 |
Efekty uczenia się: |
Learning outcomes Knowledge of elements of finite field algebra, linear algebra and number theory, which are needed to describe error-correcting codes and cryptosystems, among other things, knowledge of base-b representation (especially binary and hexadecimal expansions), ability of conversion between two different base-b representations, ability of the use of the extended Euclidean algorithm, ability of the use of modular exponentiation, ability to find inverses of the ring Z/mZ, ability to solve systems of linear congruences. Knowledge of chosen cryptosystems (symmetric ones and asymmetric ones): ability to encript and decript messages. Knowledge of basic definitions and properties of block codes. Knowledge of notions: linear codes, encoding and decoding information.. - |
Metody i kryteria oceniania: |
verification methods: Homework presentation of solutions continous evaluation The overall form of credit for the course: test |
Zajęcia w cyklu "Rok akademicki 2022/23" (w trakcie)
Okres: | 2022-10-01 - 2023-06-30 |
![]() |
Typ zajęć: |
Ćwiczenia, 30 godzin
Wykład, 15 godzin
|
|
Koordynatorzy: | Tomasz Czyżycki, Izabela Malinowska, Aneta Sliżewska | |
Prowadzący grup: | Izabela Malinowska | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Zaliczenie na ocenę
Ćwiczenia - Zaliczenie na ocenę |
|
Rodzaj przedmiotu: | obowiązkowe |
|
Tryb prowadzenia przedmiotu: | w sali |
Właścicielem praw autorskich jest Uniwersytet w Białymstoku.