Affine and Projective Geometry
Informacje ogólne
Kod przedmiotu: | 360-MS1-3GARa |
Kod Erasmus / ISCED: |
11.103
|
Nazwa przedmiotu: | Affine and Projective Geometry |
Jednostka: | Wydział Matematyki |
Grupy: |
Erasmus+ sem. zimowy |
Punkty ECTS i inne: |
4.00
|
Język prowadzenia: | angielski |
Rodzaj przedmiotu: | obowiązkowe |
Skrócony opis: |
Course objectives: Understanding elements of projective (and affine) geometry to the extend necessary to listen to specialized lectures. |
Pełny opis: |
Course profile: academic Form of study: stationary Course type: obligatory Academic discipline: science and natural science, field of study in the arts and science: mathematics Year: 3, semester: 5 Prerequisities: none lecture 30 h. exercise class 30 h. Verification methods: lectures, exercises, consultations, studying literature, home works, discussions in groups. ECTS credits: 4 Balance of student workload: attending lectures15x2h = 30h attending exercise classes 7x4h + 2h(preliminary teaching) = 30h preparation for classes 7x3h = 21h completing notes after exercises and lectures 7x2h = 14h consultations 5x2h = 10h the final examination: preparation.and take 15h + 4h = 19h Quantitative description Direct interaction with the teacher: 74 h., 2 ECTS |
Efekty uczenia się: |
Learning outcomes: Knows and understands notions of an affine and of a projective space; via the operations of the projective completion and of the affiine reduction he can transform problems of affine geometry to the framework of projective geometry and vice versa. Knows roles of fundamental configurational axioms: Minor and Major Desargues Axiom, Minor and Major Pappus Axiom. Knows the structure of subspaces of a projective space: can determine meets of subspaces and subspaces spanned by systems of subspaces. Knows analytical characterizations of collineations and correlations of (Pappian) projective spaces; knows the role of Chasles Theorem and the role of cross ratio invariance in this context. Knows how collineations act on the family of subspaces; knows the Chow Theorem. KA6_WK01, KA6_WG01, KA6_WG02, KA6_UK01, KA6_KK01 |
Metody i kryteria oceniania: |
The overall form of credit for the course: final exam |
Zajęcia w cyklu "Rok akademicki 2022/23" (w trakcie)
Okres: | 2022-10-01 - 2023-06-30 |
![]() |
Typ zajęć: |
Ćwiczenia, 30 godzin
Wykład, 30 godzin
|
|
Koordynatorzy: | Tomasz Czyżycki, Krzysztof Petelczyc, Aneta Sliżewska | |
Prowadzący grup: | Krzysztof Petelczyc | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Egzamin
Ćwiczenia - Zaliczenie na ocenę |
Właścicielem praw autorskich jest Uniwersytet w Białymstoku.