Linear Algebra I
General data
Course ID: | 0600-MS1-1AL1 |
Erasmus code / ISCED: |
11.101
|
Course title: | Linear Algebra I |
Name in Polish: | Algebra liniowa I |
Organizational unit: | (in Polish) Instytut Matematyki. |
Course groups: | |
ECTS credit allocation (and other scores): |
(not available)
|
Language: | Polish |
Type of course: | obligatory courses |
Short description: |
Course objectives: Introduction to the basic linear algebra sections as axiomatic theory, the ability to command statements using the axioms and previously proved theorems. Linear algebra is the basis to understand lectures in other branches of mathematics, especially functional analysis and numerical methods.The aim of the lecture is to reach the students knowledge of the material presented in the lecture content level.- Understanding of the concepts introduced and the content of the allegations and evidence- Citation and analyze relevant examples. |
Full description: |
Course profile: academic Form of study: stationary Course type: obligatory Academic discipline: Mathematics, field of study in the arts and science: mathematics Year: 1, semester: 1 Prerequisities: none lecture 30 h. exercise class 60 h. Verification methods: lectures, exercises, consultations, studying literature, home works, discussions in groups. ECTS credits: 6 Balance of student workload: attending lectures15x2h = 30h attending exercise classes 15x4h = 60h preparation for classes 15x2h = 30h completing notes after exercises and lectures 7x2h = 14h consultations 7x2h = 14h the final examination: preparation.and take 12h + 6h = 18h Quantitative description Direct interaction with the teacher: 110 h., 4 ECTS Practical exercises: 114 h., 4 ECTS |
Bibliography: |
(in Polish) 1. R.R. Andruszkiewicz, Wykłady z algebry liniowej I, Wydawnictwo Uniwersytetu w Białymstoku, Białystok 2005. 2. G. Banaszak, W. Gajda, Elementy algebry liniowej I i II, Wydawnictwo Naukowo-Techniczne, Warszawa 2002. 3. A. Białynicki-Birula, Algebra, Wydawnictwo Naukowe PWN, Warszawa 2009. 4. J. Gancarzewicz, Algebra liniowa i jej zastosowania, Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków 2004. 5. A.I. Kostrykin, Wstęp do algebry 2, Algebra liniowa, Wydawnictwo Naukowe PWN, Warszawa 2004. 6. red. A.I. Kostrykin, Zbiór zadań z algebry, Wydawnictwo Naukowe PWN, Warszawa 2005. 7. A. Mostowski, M. Stark, Algebra wyższa, część I, Wydawnictwo Naukowe PWN, Warszawa 1953. 8. A. Mostowski, M. Stark, Elementy algebry wyższej, Wydawnictwo Naukowe PWN, Warszawa 1974. |
Learning outcomes: |
Learning outcomes: A student knows definitions and examples of key algebraic structures.K_U17, K_W02, K_W05, K_W04 A student understands the concepts of linear algebra.K_U16, K_W04, K_W02, K_W05 A student is proficient in the use of complex numbers.K_U17 A student knows well matrix analysis.K_U17, K_U18, K_U21 A student knows and understands a concept of linear mappings and their matrices in ordered bases.K_U16, K_U17, K_W02, K_W04, K_W05, K_U20, K_U21 A student solves systems of linear equations.K_U19 A student understands that modern technologies result from scientific discoveries, including discoveries in linear algebra.K_K08 |
Assessment methods and assessment criteria: |
The overall form of credit for the course: final exam |
Copyright by University of Bialystok.