University of Bialystok - Central Authentication SystemYou are not logged in | log in
course directory - help

Linear Algebra II

General data

Course ID: 0600-MS1-1AL2 Erasmus code / ISCED: 11.101 / (unknown)
Course title: Linear Algebra II Name in Polish: Algebra liniowa II
Department: (in Polish) Zakład Algebry
Course groups: (in Polish) 1 rok 1 stopnia sem. letni Matematyka spec. Finansowa
(in Polish) 1 rok 1 stopnia sem. letni Matematyka spec. Teoretyczna
(in Polish) 3L stac. I st. studia matematyki - przedmioty obowiązkowe
ECTS credit allocation (and other scores): 6.00
view allocation of credits
Language: Polish
Type of course:

obligatory courses


Linear Algebra I 0600-MS1-1AL1

Short description:

Course objectives: Continuation of the course in linear algebra to introduce students to more advanced areas such as the theory of vector spaces with inner product, orthogonalization, linear operators, eigenvalues and eigenvectors, diagonalization of matrices, Jordan canonical form, quadratic forms and their canonical forms, tensor product and inner product. The aim of the course is to provide tools for the study of theory of differential equations, classification objects of second degree, differential geometry, and functional analysis, as well as applications in physics and mechanics.

Full description:

Course profile: academic

Form of study: stationary

Course type: obligatory

Academic discipline: Mathematics, field of study in the arts and science: mathematics

Year: 1, semester: 2

Prerequisities: Linear Algebra I

lecture 30 h. exercise class 45 h.

Verification methods: lectures, exercises, consultations, studying literature, home works, discussions in groups.

ECTS credits: 6

Balance of student workload:

attending lectures15x2h = 30h

attending exercise classes 15x3h = 45h

preparation for classes 15x2h = 30h

completing notes after exercises and lectures 7x3h = 21h

consultations 5x2h = 10h

the final examination: preparation.and take 12h + 6h = 18h

Quantitative description

Direct interaction with the teacher: 91 h., 3 ECTS

Practical exercises: 106 h., 3 ECTS

Bibliography: (in Polish)

1. R.R. Andruszkiewicz, Wykłady z algebry liniowej II, Wydawnictwo Uniwersytetu w Białymstoku, Białystok 2007.

2. G. Banaszak, W. Gajda, Elementy algebry liniowej I i II, Wydawnictwo Naukowo-Techniczne, Warszawa 2002.

3. A. Białynicki-Birula, Algebra, Wydawnictwo Naukowe PWN, Warszawa 2009.

4. J. Gancarzewicz, Algebra liniowa i jej zastosowania, Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków 2004.

5. A.I. Kostrykin, Wstęp do algebry 2, Algebra liniowa, Wydawnictwo Naukowe PWN, Warszawa 2004.

6. red. A.I. Kostrykin, Zbiór zadań z algebry, Wydawnictwo Naukowe PWN, Warszawa 2005.

7. A. Mostowski, M. Stark, Algebra wyższa, Część I, Wydawnictwo Naukowe PWN, Warszawa 1953.

8. A. Mostowski, M. Stark, Elementy algebry wyższej, Wydawnictwo Naukowe PWN, Warszawa 1974.

Learning outcomes:

Learning outcomes:

A student knows and understands basic concepts associated with a unitary structure.K_U16, K_U17, K_W02, K_W03, K_W04, K_W05

A student can introduce the matrix in the Jordan canonical form.K_U16, K_U20, K_U21

A student knows the basic concepts of multilinear algebra.K_W02, K_W03, K_W04, K_W05, K_U16

A student knows the classification of curves and surfaces of 2nd degree.K_U17

A student understands that modern technologies result from scientific discoveries, including discoveries in linear algebra.K_K08

Assessment methods and assessment criteria:

The overall form of credit for the course: final exam

Classes in period "Academic year 2017/2018" (in progress)

Time span: 2017-10-01 - 2018-06-30
Choosen plan division:

see course schedule
Type of class: Class, 45 hours more information
Lecture, 30 hours more information
Coordinators: Karol Pryszczepko
Group instructors: Karol Pryszczepko, Mateusz Woronowicz
Students list: (inaccessible to you)
Examination: Examination
Course descriptions are protected by copyright.
Copyright by University of Bialystok.