Mathematical Analysis III
Informacje ogólne
Kod przedmiotu: | 360-MS1-2AM3a | Kod Erasmus / ISCED: |
11.102
![]() ![]() |
Nazwa przedmiotu: | Mathematical Analysis III | ||
Jednostka: | Wydział Matematyki | ||
Grupy: | |||
Punkty ECTS i inne: |
8.00 ![]() ![]() |
||
Język prowadzenia: | angielski | ||
Rodzaj przedmiotu: | obowiązkowe |
||
Tryb prowadzenia przedmiotu: | w sali |
||
Skrócony opis: |
(tylko po angielsku) Course objectives: Knowledge of material related to presented contents: a) understanding introduced notions and theorems b) knowledge of presented proofs c) giving appropriate examples d) solving computational problems |
||
Pełny opis: |
(tylko po angielsku) Course profile: academic Form of study: stationary Course type: obligatory Academic discipline: Mathematics, field of study in the arts and science: mathematics Year: 2, semester: 3 Prerequisities: Mathematical Analysis II, Linear Algebra II lecture 60 h. exercise class 60 h. Verification methods: lectures, exercises, consultations, studying literature, home works, discussions in groups. ECTS credits: 8 Balance of student workload: attending lectures15x4h = 60h attending exercise classes 15x4h = 60h preparation for classes 7x3h = 21h completing notes after exercises and lectures 7x2h = 14h consultations 5x1h = 5h home works: solving exercises 45h = 45h the final examination: preparation.and take 12h + 4h = 16h Quantitative description Direct interaction with the teacher: 129 h., 4 ECTS Practical exercises: 145 h., 5 ECTS |
||
Efekty uczenia się: |
(tylko po angielsku) Learning outcomes: Can integrate function of several variables.K_U07, K_U10, K_U11, K_U13, K_U14, K_W02, K_W04, K_W05, K_W07 Knows Stokes theorem, can apply it and understands vector versions of this theorem.K_U12, K_U13, K_U14, K_U18, K_U24, K_W02, K_W04, K_W05, K_W07 Knows definitions and basic properties of operators such as gradient, rotation and divergence.K_U16, K_U17, K_W02, K_W04, K_W05 Knows and can apply differential calculus of functions of several variables: knows basic theorems in this topic.K_U12, K_W02, K_W04, K_W05, K_W07 Possesses basic knowledge on the spaces of continuous linear and multilinear maps.K_U16, K_U17, K_W02, K_W04, K_W05 |
||
Metody i kryteria oceniania: |
(tylko po angielsku) The overall form of credit for the course: final exam |
Zajęcia w cyklu "Rok akademicki 2022/23" (jeszcze nie rozpoczęty)
Okres: | 2022-10-01 - 2023-06-30 |
![]() |
Typ zajęć: |
Ćwiczenia, 90 godzin ![]() Wykład, 60 godzin ![]() |
|
Koordynatorzy: | Tomasz Czyżycki, Maciej Horowski, Aneta Sliżewska | |
Prowadzący grup: | (brak danych) | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: | Egzamin |
Właścicielem praw autorskich jest Uniwersytet w Białymstoku.