Uniwersytet w Białymstoku - Centralny System Uwierzytelniania
Strona główna

Wstęp do matematyki

Informacje ogólne

Kod przedmiotu: 0600-MS1-1WDM
Kod Erasmus / ISCED: 11.101 Kod klasyfikacyjny przedmiotu składa się z trzech do pięciu cyfr, przy czym trzy pierwsze oznaczają klasyfikację dziedziny wg. Listy kodów dziedzin obowiązującej w programie Socrates/Erasmus, czwarta (dotąd na ogół 0) – ewentualne uszczegółowienie informacji o dyscyplinie, piąta – stopień zaawansowania przedmiotu ustalony na podstawie roku studiów, dla którego przedmiot jest przeznaczony. / (brak danych)
Nazwa przedmiotu: Wstęp do matematyki
Jednostka: Instytut Matematyki.
Grupy: 3L stac. I st. studia matematyki - przedmioty obowiązkowe
Punkty ECTS i inne: (brak) Podstawowe informacje o zasadach przyporządkowania punktów ECTS:
  • roczny wymiar godzinowy nakładu pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się dla danego etapu studiów wynosi 1500-1800 h, co odpowiada 60 ECTS;
  • tygodniowy wymiar godzinowy nakładu pracy studenta wynosi 45 h;
  • 1 punkt ECTS odpowiada 25-30 godzinom pracy studenta potrzebnej do osiągnięcia zakładanych efektów uczenia się;
  • tygodniowy nakład pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się pozwala uzyskać 1,5 ECTS;
  • nakład pracy potrzebny do zaliczenia przedmiotu, któremu przypisano 3 ECTS, stanowi 10% semestralnego obciążenia studenta.

zobacz reguły punktacji
Język prowadzenia: polski
Rodzaj przedmiotu:

obowiązkowe

Skrócony opis:

Założenia i cele przedmiotu: Zaprezentowanie podstawowych pojęć z zakresu logiki i teorii mnogości, przekazanie kultury matematycznej – nabycie umiejętności poprawnego definiowania pojęć i dowodzenia faktów oraz poszukiwania kontrprzykładów.

Pełny opis:

Profil kształcenia: ogólnoakademicki

Forma studiów: stacjonarne

Przedmiot obowiązkowy

Dziedzina: nauki matematyczne, dyscyplina: matematyka

Rok studiów: 1, semestr: 1

Prerekwizyty: brak

wykład 30 godz. ćwiczenia 30 godz.

Metody dydaktyczne: wykłady, ćwiczenia rachunkowe, konsultacje, praca nad literaturą, rozwiązywanie zadań domowych, dyskusje w grupach problemowych.

Punkty ECTS: 4

Bilans nakładu pracy studenta:

udział w wykładach15x2h = 30h

udział w ćwiczeniach 7x4h + 2h(instruktażu) = 30h

przygotowanie do zajęć 7x3h = 21h

dokończenie rozwiązywania zadań rozpoczętych na ćwiczeniach i opracowanie w domu notatek po odbytych zajęciach (wykładach, ćwiczeniach) 7x2h = 14h

udział w konsultacjach 5x2h = 10h

przygotowanie do egzaminu i udział w nim 15h + 4h = 19h

Wskaźniki ilościowe

nakład pracy studenta związany z zajęciami wymagającymi bezpośredniego udziału nauczyciela akademickiego: 74 godzin, 2 ECTS

nakład pracy studenta związany z zajęciami o charakterze praktycznym: 75 godzin, 3 ECTS

Efekty uczenia się:

Efekty kształcenia w ramach realizacji przedmiotu:

Potrafi posługiwać się językiem klasycznego rachunku zdań i kwantyfikatorów i umiejętność tę potrafi wykorzystać w języku potocznym.K_W03, K_W05, K_W06

Rozumie pojęcia tautologii tych rachunków i potrafi sprawdzić prawdziwość formuły klasycznej logiki zdań.K_W03, K_W05, K_W06

Rozumie ograniczenia związane ze sprawdzaniem prawdziwości formuł klasycznej logiki kwantyfikatorów.K_W06 K_U01, K_U02, K_U04

Zna język teorii mnogości i umie dowodzić elementarne twierdzenia tej teorii.K_W06

Potrafi wyznaczyć podstawowe własności relacji dwuargumentowych i rozumie ich związek z iloczynami kartezjańskimi.K_W06

Zna i rozumie pojęcie relacji równoważności oraz rolę zasady abstrakcji i potrafi ją wykorzystać do konstrukcji nowych pojęć.K_W05, K_W06, K_U01, K_U02, K_U03, K_U05, K_U06, K_U08

Rozumie i potrafi stosować pojęcia obrazu i przeciwobrazu wyznaczonego przez funkcje oraz potrafi sprawdzać surjektywność i injektywność funkcji.K_U06

Zna pojęcie indeksowanej rodziny zbiorów i potrafi wykonywać działania uogólnione na takich rodzinach. K_W05, K_U09

Rozumie pojęcie liczby kardynalnej i potrafi wiedzę tę wykorzystać do klasyfikacji zbiorów ze względu na ich moce. Zdaje sobie sprawę z różnych rodzajów nieskończoności. Zna twierdzenia Cantora i Cantora - Bernsteina.

Zna i rozumie pojęcia częściowych porządków, porządków liniowych i dobrych, rozumie znaczenie indukcji pozaskończonej i twierdzenia Zermelo.K_U06, K_U07

Po zrealizowaniu przedmiotu student uzyskuje podstawy metodologiczne uprawiania i uczenia się matematyki.K_W06, K_K01, K_K02

Metody i kryteria oceniania:

Ogólna forma zaliczenia: egzamin

Przedmiot nie jest oferowany w żadnym z aktualnych cykli dydaktycznych.
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet w Białymstoku.
ul. Świerkowa 20B, 15-328 Białystok tel: +48 85 745 70 00 (Centrala) https://uwb.edu.pl kontakt deklaracja dostępności USOSweb 6.8.0.0-5 (2022-09-30)