Uniwersytet w Białymstoku - Centralny System UwierzytelnianiaNie jesteś zalogowany | zaloguj się
katalog przedmiotów - pomoc

Analiza zespolona

Informacje ogólne

Kod przedmiotu: 360-MS1-3AZ Kod Erasmus / ISCED: 11.103 / (0541) Matematyka
Nazwa przedmiotu: Analiza zespolona
Jednostka: Wydział Matematyki
Grupy: 1 - 3 rok sem. zimowy Matematyka spec. matematyka teoretyczna
Punkty ECTS i inne: 5.00
zobacz reguły punktacji
Język prowadzenia: polski
Rodzaj przedmiotu:

obowiązkowe

Skrócony opis:

Założenia i cele przedmiotu: Zapoznanie z podstawowymi pojęciami i technikami rachunkowymi analizy zespolonej.

Literatura:

W. Szabat, Analiza zespolona.

K. Maurin, Analiza. Wstęp do analizy globalnej

F. Leja, Funkcje zespolone

J. Krzyż, Zbiór zadań z funkcji analitycznych

J. Długosz Funkcje zespolone. Teoria, przykłady, zadania

E. Kącik, L. Siewierski, Wybrane działy matematyki wyższej z

ćwiczeniami

Efekty uczenia się:

Efekty kształcenia w ramach realizacji przedmiotu:

Dobrze rozumie pojęcie funkcji holomorficznej jednej zmiennej zespolonej.K_W01, K_W02, K_W03, K_W04, K_W05, K_U09, K_U10, K_U12

Rozumie zagadnienia wieloznaczności funkcji holomorficznej.K_W02, K_W03, K_W04, K_W05, K_U23, K_U24

Posługuje się pojęciem izolowanego punktu osobliwego, rozwija funkcje holomorficzne w szereg Laurent'a i całkuje je po krzywych.K_W02, K_W03, K_W04, K_W05, K_W07, K_U07, K_U10, K_U12, K_U13

Zajęcia w cyklu "Rok akademicki 2020/21" (zakończony)

Okres: 2020-10-01 - 2021-06-30
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Ćwiczenia, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Grzegorz Jakimowicz
Prowadzący grup: Grzegorz Jakimowicz
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Zaliczenie na ocenę
Ćwiczenia - Zaliczenie na ocenę
Skrócony opis:

Założenia i cele przedmiotu: Zapoznanie z podstawowymi pojęciami i technikami rachunkowymi analizy zespolonej.

Pełny opis:

Treść zajęć:

Własności algebraiczne ciała liczb zespolonych i ich geometryczna interpretacja; topologia płaszczyzny zespolonej i sfery Riemanna; podstawowe funkcje zespolone i ich własności; wyznaczanie obrazu zbioru przy odwzorowaniu zespolonym; ciągłość i różniczkowalność funkcji zespolonych - warunki Cauchy'ego - Riemanna; funkcje holomorficzne, zespolone szeregi potęgowe; obliczanie całki funkcji zespolonej wzdłuż drogi: funkcja pierwotna, twierdzenia całkowe Cauchy'ego; rozwijanie funkcji w szereg Laurenta, izolowane punkty osobliwe, residua; metoda residuum obliczania całki funkcji zespolonych po krzywych zamkniętych, oraz całki niewłaściwej funkcji zmiennej rzeczywistej. Wprowadzenie do teorii powierzchni Riemanna.

Literatura:

W. Szabat, Analiza zespolona.

K. Maurin, Analiza. Wstęp do analizy globalnej

F. Leja, Funkcje zespolone

J. Krzyż, Zbiór zadań z funkcji analitycznych

J. Długosz Funkcje zespolone. Teoria, przykłady, zadania

E. Kącik, L. Siewierski, Wybrane działy matematyki wyższej z

ćwiczeniami

Zajęcia w cyklu "Rok akademicki 2021/22" (zakończony)

Okres: 2021-10-01 - 2022-06-30
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Ćwiczenia, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Grzegorz Jakimowicz
Prowadzący grup: Krzysztof Bardadyn, Grzegorz Jakimowicz
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Zaliczenie na ocenę
Ćwiczenia - Zaliczenie na ocenę
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet w Białymstoku.