(in Polish) 1 rok 2 stopnia sem. letni Informatyka spec. Technologie Internetowe i Mobilne (course group defined by Institute of Computer Science)
Key
If course is offered then a registration cart will be displayed.
![]() ![]() ![]() ![]() ![]() ![]()
Use one of the "i" icons below for additional information.
2023 - Academic year 2023/2024 2024 - Academic year 2024/2025 (there could be semester, trimester or one-year classes) |
Actions | |||||||
---|---|---|---|---|---|---|---|---|
2023 | 2024 | |||||||
510-IS2-1BDPA-23 |
![]() |
![]() |
Classes
Academic year 2023/2024
Groups
Brief description
(in Polish) Architektury i typy danych. Algorytmy przetwarzania danych w dużej skali. Techniki optymalizacji przetwarzania danych. Systemy rozproszonego przechowywania i przetwarzania danych. Przetwarzanie danych w chmurze. |
|
||||
510-IS2-1TXP-23 |
![]() |
![]() |
Classes
Academic year 2023/2024
Groups
Brief description
The aim of the course is to familiarize students with the following formats: XML, JSON, YAML, CBOR, etc., and to develop the skills of creating documents in these languages. |
|
||||
510-IS2-1GUM-23 |
![]() |
![]() |
Classes
Academic year 2023/2024
Groups
Brief description
(in Polish) Definicja głębokich sieci neuronowych jako specyficznego paradygmatu uczenia maszynowego, optymalizacji i modelowania. Definicja parametrów i hiperparametrów modeli. Omówienie modułowych charakterystyk modeli głębokich. Opis najważniejszych i najczęściej używanych elementów głębokich sieci neuronowych, w tym warstw gęstych, splotowych, agregujących, fałdujących, redukujących i resztkowych. Komponenty nieliniowe i normalizujące. Funkcja straty i charakterystyka najczęściej stosowanych funkcji straty. Uczenie się poprzez hetero- i autoasocjację. Implementacja algorytmów głębokich sieci neuronowych. Głębokie modele uczenia się bez nadzoru, w szczególności do analizy skupień. Modele generatywne (GAN). |
|
||||
510-IS2-1JAI-23 |
![]() |
![]() |
Classes
Academic year 2023/2024
Groups
Brief description
Using the English language in IT professional situations, as well as developing the ability to understand and use advanced IT terminology (computer networks, operating systems, electronic devices, data and computer systems security, communication systems, computer engineering, development of information technology). |
|
||||
510-IS2-1MSR-23 |
![]() |
![]() |
Classes
Academic year 2023/2024
Groups
Brief description
Course contents: Fuzzy sets, fuzziness and randomness, types of membership functions of fuzzy sets, arithmetic operations on fuzzy numbers, extension principle, basic fuzzy models, fuzzy neural models, fuzzy control using fuzzy models. The aim of the course is to familiarize students with fuzzy modelling and analysis. |
|
||||
510-IS2-1MOR-23 |
![]() |
![]() |
Classes
Academic year 2023/2024
Groups
Brief description
(in Polish) Przedmiot ma za zadanie wprowadzenie studentów w zagadnienia nowoczesnych obliczeń naukowych realizowanych przy pomocy akceleratorów opartych na procesorach graficznych. W ramach wykładu zostaną omówione podstawy teoretyczne a w trakcie ćwiczeń studenci zdobędą praktyczną wiedzę w zakresie analizy algorytmów obliczeniowych, wyodrębniania kerneli obliczeniowych i ich przenoszenia na koprocesor graficzny z wykorzystaniem języka CUDA. |
|
||||
510-IS2-1TMO-23 |
![]() |
![]() |
Classes
Academic year 2023/2024
Groups
Brief description
Course objectives: The aim of the course is to familiarize students with contemporary mobile technologies. Course contents: positioning and navigation of mobile users; global positioning system (GPS); cellular systems - architecture and principles of operation of the system; wireless systems; complex mobile processing problems; mobile IP; wireless LAN. |
|
||||
510-IS2-1TMUL-23 |
![]() |
![]() |
Classes
Academic year 2023/2024
Groups
Brief description
Aims and objectives: The aim of the course is to familiarize students with the most popular applications supporting the development of multimedia applications. Assumptions of the course allow to acquire and broaden knowledge from hardware and software configuration of systems for multimedia applications and computer applications as a tool for creating interactive presentations and demonstrations. Multimedia as a form of communication - multimedia applications. Multimedia devices. Internet image and sound transmission in real time - videoconferencing. Multimedia data compression. Entropy. Redundancy. Lossy compression - standard JPEG, MPEG Video, MPEG Audio. Lossless compression - Huffman method, Huffman tree construction. Dictionary methods (LZ). Graphics, audio, video coding systems - formats. Digital recording and processing of sound and video sequences. Computer animations, video capturing. Multimedia applications, tutorials. |
|
||||
510-IS2-1SE-23 |
![]() |
![]() |
Classes
Academic year 2023/2024
Groups
Brief description
Using rules and facts to representing knowledge, inferring, and making decisions. The architecture of a system that uses a rule engine. Applications of the rule-based approach. Expert systems and knowledge-based systems versus business-rule systems and BRMS software. Technologies for developing rule-based and expert systems. Methods for gathering knowledge and constructing rules and facts. Problems with rule processing: conflict resolution strategies and uncertainty modeling. Hybrid AI systems that use explicit representations of knowledge. This subject is aimed at familiarizing students with - working principles of expert (knowledge-based) systems and rule-based systems, - application fields of expert/knowledge/rule-based systems, and at developing student's skills in designing and implementing practical rule-based systems by using selected technologies. |
|
||||