Uniwersytet w Białymstoku - Centralny System UwierzytelnianiaNie jesteś zalogowany | zaloguj się
katalog przedmiotów - pomoc

Topology

Informacje ogólne

Kod przedmiotu: 360-MS1-2TOPa Kod Erasmus / ISCED: 11.102 / (0541) Matematyka
Nazwa przedmiotu: Topology
Jednostka: Wydział Matematyki
Grupy:
Punkty ECTS i inne: 4.00
zobacz reguły punktacji
Język prowadzenia: angielski
Rodzaj przedmiotu:

obowiązkowe

Wymagania (lista przedmiotów):

Wstęp do matematyki 360-MS1-1WDM

Założenia (lista przedmiotów):

Analiza matematyczna I 0600-FS1-1AM1

Założenia (opisowo):

The student has basic knowledge in the field of Set Theory and Mathematical Analysis.

Skrócony opis:

Course objectives: Getting to know the basic notions and methods of general topology and certain chosen topics concerning metric spaces; acquiring an ability to solve the problems and use of the relevant literature without further assistance.

Pełny opis:

Course profile: academic

Form of study: stationary

Course type: obligatory

Academic discipline: Mathematics, field of study in the arts and science: mathematics

Year: 2, semester: 3

Prerequisities: Mathematical Analysis II

lecture 30 h. exercise class 30 h.

Verification methods: lectures, exercises, consultations, studying literature, home works, discussions in groups.

ECTS credits: 4

Balance of student workload:

attending lectures15x2h = 30h

attending exercise classes 7x4h + 2h(preliminary teaching) = 30h

preparation for classes 7x3h = 21h

completing notes after exercises and lectures 7x2h = 14h

consultations 5x2h = 10h

the final examination: preparation.and take 15h + 4h = 19h

Quantitative description

Direct interaction with the teacher: 74 h., 2 ECTS

Practical exercises: 75 h., 3 ECTS

Literatura:

1. James R. Munkres "Topology", Pearson; Second Edition 2014.

2. Bert Mendelson "Introduction to Topology" Dover Publications; Third Edition 1990.

3. M.A. Armstrong "Basic Topology" Springer; Binding Damaged and Torn Edition 1997.

4. Lynn Arthur Steen, J. Arthur Seebach Jr. "Counterexamples in Topology" Dover Publications; New edition 1995.

Efekty uczenia się:

Student knows the basic concepts and methods of general topology extended with selected problems of the theory of metric spaces, explains the relationships between the learned topological concepts, applies definitions and basic theorems to study the properties of metric and topological spaces and the mappings between them - KA6_WG03, KA6_WG04, KA6_WG05, KA6_UW13, KA6_UW14, KA6_UU02 .

Student acquires methodological foundations for practicing and learning mathematics: is able to comprehensively, in speech and in writing, present correct mathematical reasoning, formulate theorems and definitions from general topology, correctly use propositional calculus and quantifiers as well as elements of set theory to express notions and facts of general topology - KA6_WG01, KA6_WG02, KA6_UU01.

Student understands that modern technologies are the result of scientific discoveries, including in topology, understands the need to improve their skills and qualifications, carefully sets the priorities and sequence of their activities - KP6_UU1, KP6_KK1, KA6_WK03, KA6_KR01.

Metody i kryteria oceniania:

Credit with a grade, which is determined on the basis of active participation in classes and the results of tests. Passing exercises on the basis of tests checking the ability to solve tasks and activity during the exercises.

Zajęcia w cyklu "Rok akademicki 2022/23" (jeszcze nie rozpoczęty)

Okres: 2022-10-01 - 2023-06-30
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Ćwiczenia, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Tomasz Czyżycki, Karol Pryszczepko, Aneta Sliżewska
Prowadzący grup: (brak danych)
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet w Białymstoku.